新能源并网(分布式光伏系统并网需要考虑什么问题)

2024-03-28 05:29:54

分布式光伏系统并网的话需要考虑什么问题?

分布式光伏系统并网需要考虑安全、光伏配置、计量和结算方面的问题。 在安全方面:并网点开关是否符合安全要求,设备在电网异常或故障时的安全性,能否在电网停电时可靠断开以保证人身安全等。 在光伏配置方面:光伏容量的配置,主要设备选择,接入点的选择,系统监测控制功能的实现,反孤岛装置的配置安装等。 在计量和结算方面:计费和结算方式,上网电价情况,获得电价补贴所需的材料、数据及流程等。 (参考资料来自太阳能电站建设专家-广东太阳库新能源科技有限公司)

分布式光伏系统并网霈要考虑什么问题?

亚坦新能为你解答:

分布式光伏系统并网需考虑安全、光伏配置、计量和结算方面的问题,在安全方面并网点开关是否符合安全要求、设备在电网异常或故障时的安全性能否在电网停电时可靠断开以保证人身安全。

,谢谢

安装交大蓝天分布式光伏系统并网需要考虑什么问题?

价格问题!即可!其余的产品 你可以选择让他们采购!或者直接自己采购了让他们安装!

分布式光伏发电系统并网需要考虑什么问题?

古瑞瓦特的分布式并网发电系统应用非常广泛,也广获好评。从它的实际案例来看,分布式光伏系统并网需考虑安全、光伏配置、计量和结算方面的问题,在安全方面并网点开关是否符合安全要求、设备在电网异常或故障时的安全性能否在电网停电时可靠断开以保证人身安全。

请问下,想要安装分布式光伏系统,需要考虑什么问题?

分布式光伏系统并网需考虑安全、光伏配置、计量和结算方面的问题,在安全方面并网点开关是否符合安全要求、设备在电网异常或故障时的安全性能否在电网停电时可靠断开以保证人身安全。

在光伏配置方面光伏容量的配置、主要设备选择、接入点的选择、系统监测控制功能的实现,反孤岛装置的配置安装等。

在计量和结算方面计费和结算方式、上网电价情况、获得电价补贴所需的材料,数据及流程等。

安装交大蓝天分布式光伏发电系统并网需要考虑什么问题?

不用,准备身份证,房产证,物业允许安装证明,到供电局填一下表就行了(可以找安装的代办)之后等待审核就行。

分布式光伏电站选址需要考虑哪些技术问题

分布式光伏电站选址需要考虑技术问题有:

1、建筑物的高度:太高的建筑,是不适合安装的光伏组件的。为什么呢,原因有三:

1)光伏组件单体面积大,越高风荷载越大;

之前,很多省份出台了太阳能热水器安装的管理规定,要求12层以下的建筑必须安装太阳能热水器

12层的建筑大概40m,风速、风压会高于地面。与太阳能热水器比起来,光伏阵列的单体面积大的多,风荷载也会大很多。

目前,并没有说多高以上的建筑不能安装,但高层建筑上安装,一定要充分考虑风荷载,算算支架和基础的抗风能力和承载力。

2)施工难度大,二次搬运费用高

施工时,光伏组件和汇流箱是要运到楼顶的。采用吊车吊还是人工搬运?这要看建筑物周边的具体情况。但毫无疑问,建筑物越高,二次搬运费用越高。

3)运行维护费用高

光伏项目不是装在屋顶上不用管,就只等着收钱的项目。检修、清洗、更换设备等等,建筑物越高成本就越高。

基于以上三个原因,不建议在高层建筑上安装开展光伏项目。

2、屋顶的可利用面积

屋顶的可利用面积直接决定了项目规模的大小,而规模效应直接影响项目的投资、运行成本和收益。

如果建筑物的所有者在自己的屋顶建设项目,采用现有工人代维的方式,不设单独的运维人员;项目所发电量直接被使用,收益不需要分享。这种情况,规模小点是可以接受的。

如果电力公司开展投资项目,就必须要综合考虑项目的投资规模效益、后期运维、收益分享模式等因素,进行项目收益测算。

考虑可利用面积时,要充分考虑女儿墙、屋顶构筑物和设备的遮挡。我曾见过女儿墙约1.5m的屋顶,周边都是广告牌的屋顶,布满中央空调和太阳能热水器的屋顶。年份越久的屋顶,可利用面积的比例越少。一般1万m2的可利用面积,彩钢瓦我会按800kW考虑,混凝土按600kW考虑。

3、屋顶的类型与承载力

常见的屋顶类型分混凝土和彩钢瓦两种(也有瓦房屋顶,但不常见,暂不考虑),未来设计中将采用不同的技术方案。

分布式光伏电站选址考虑的问题(图表)

由于采用不同的基础形式和安装方式,屋顶所承受的恒荷载和活荷载的计算方法也是不一样的。

另外,混凝土屋顶需要考虑原有的防水措施,彩钢瓦要考虑瓦型、朝向等因素。

4、屋顶的年限

混凝土屋顶的使用年限较长,一般情况下能保证光伏电站25年的运营期;而彩钢瓦的使用年限一般在15年左右,这样就需要考虑一笔电站转移费用了。

3、接入方式和电压等级

接入方式分单点接入和多点接入;电压等级一般分380V、10kV和35kV。对于不同接入方式、电压等级,电网公司的管理规定是不一样的,如:

电网公司接收接入申请受理到告知业主接入系统方案确认单的时间为:单点并网项目20个工作日、多点并网项目30 个工作日。

以380 V接入的项目,接入系统方案等同于接入电网意见函;以35 kV、10 kV接入的项目,则要分别获得接入系统方案确认单、接入电网意见函,根据接入电网意见函开展项目备案和工程设计等工作,并在接入系统工程施工前,要将接入系统工程设计相关资料提交客户服务中心,根据其答复意见开展工程建设等后续工作。

投资屋顶分布式光伏需要考虑哪些

交大蓝天建议业主在投资屋顶分布式光伏时主要要考虑以下问题:1、房顶的面积,以及房顶是什么材料,因为这直接关系到能不能安装分布式光伏,能安装多大容量的系统;2、屋顶的朝向,当地的光照条件;3、光伏发的电主要是自用还是上网。最好是咨询一下专业的光伏发电系统设计安装公司,让他们给你出个方案。

风电、光伏等新能源可以直接并入电网

大规模新能源发电对电力系统稳定性的影响

 风速、光照是随时变化的,风电机组、光伏电站的出力主要由风速、光照强度的大小决定,因此风电场、光伏电站的出力也是波动的。其不稳定性将会导致大规模风电、光伏电站并网之后,造成电网电压、电流和频率的波动,影响电网的电能质量。电网公司为消除不利影响,需要增加额外的旋转备用容量,从而增加了电网运行成本,也会间接影响新能源的发展。风电近几年发展尤为迅速,已经成为继火电、水电后的第三大电能生产形势,本文将着重介绍大规模风电机组并网对电网稳定性产生的影响。

 大规模新能源并网对电网暂态稳定性存在影响。在新能源发电装机比例较大的电网中,由于改变了电网原有的线路传输功率、潮流分布以及电能质量等,因此,大规模新能源并网后电力系统的暂态稳定性会发生变化。比如,大规模风机并网系统,如果地区电网较弱,风电机组在系统发生故障后无法重新建立机端电压,风电机组运行超速失去稳定,将会引起地区电网暂态电压稳定性破坏[2]。

 大规模风电机组并网电力系统,其中风电机组的低电压穿越能力将会对电力系统稳定性造成较大影响。低电压穿越(LVRT)指在风机并网点电压跌落的时候,风机能够保持并网,甚至向电网提供一定的无功功率,支持电网恢复电压,直到电网恢复正常,即成功“穿越”这个低电压区间。当风电在电网中所占比例较大时,若风机在系统发生故障时采取被动保护式解列方式,将会增加整个系统的恢复难度,甚至可能加剧故障,并最终导致系统其他机组全部解列。因此,在大规模风机并网的电力系统中,风电机组必须具备相应的低电压穿越能力.

首先我们将风电、光伏归入分布式发电,简单理解就是分散。那么为什么要推广分布式发电:大规模互联电网弊端凸显,成本高,运行难度大,难以适应用户更高层次的安全性和可靠性要求(出现过大规模停电事故),供电方式多样化也受到限制;能源危机爆发及环保意识的增强;科研、企业人员要生存(逃)等。推广分布式发电有何优点那:分布式发电可以简单根据负荷现场布置,使得其布局灵活,电力资源有效分配;在一定程度上延缓了输、配电网升级换代所需的巨额投资;与传统大电网互为备用,提供供电可靠性;新电改推出,说不定还能赚点钱,体验老板的感觉;推动供电方竞价机制的建立。但是搞了这么多年分布式发电,似乎更多是口号和利益的分割,而细心观察自然会发现分布式发电都是直接接入电网的,其中涉及到分布式发电电源到电网之间的连接点--电力电子变流器转换环节,以及相关控制、保护等环节,这估计也算是技术的难点,也是企业差异的体现。那么分布式发电到底存在哪些技术问题:设计规划问题:分布式发电逐步渗透电网,自身随机性强,需要考虑可靠性问题;分布式发电种类多样、规模多样,运行方式多变,如何安装、安装在哪里、何种运行方式,带来的总体评价性能是不一样的;当前及未来电网的承载能力及“三公”分配问题,在一定程度上影响了分布式发电的并网情况,如西北地区悠闲转动的风机。电能质量问题:就目前看,少量的分布式发电装置对电网来说基本上忽略的,但是逐步放开后,新能源比重增加,会对电力系统的电压形态、短路电流、电压闪边、谐波、直流注入、网损、潮流、继电保护等带来一系列影响。因为分布式发电许多采用电力电子装置接入电网,变流器(逆变器)的控制策略对电网不平衡电压会有影响。许多分布式发电并网采用防逆流装置,正常运行时不会向电网注入功率,但当配电系统发生故障时,短路瞬间会有分布式电源的电流注入电网,增加了配电网开关的短路电流水平,可能使配电网的开关短路电流超标。因此, 大功率分布式电源接入电网时,必须事先进行电网分析和计算,以确定分布式电源对配电网短路电流水平的影响程度。并网时一般不会发生闪变,孤岛运行时如储能元件能量太小,易发生电压闪变因为电力电子装置自身易产生谐波,主动和被动谐波治理也得以被推动发展。因为变流器并网过程存在有无(高频)隔离变压器之分,而无变压器情况下系统整体效率得以提升,使得其存在一定市场份额,当无隔离(高频)变压器时,那么存在分布式电源侧直流和电网交流侧的互相交互作用(可以直观想象一下太阳能发电),当电网存在直流注入时,将直接造成系统电磁元件(如变压器)的磁饱和现象,同时产生转矩脉动。分布式电源的接入改变了配电网中各支路的潮流流动情况,使得系统网损发生变化,其受到负载、连接的分布式电源的位置和容量大小等影响。分布式电源的接入,使得系统潮流不再单向流动,难以预测,极大影响电压调整。因为传统大电网的继电保护装置已经成形,短时内不会重新改造,一方面分布电源的接入要考虑与之配合问题,不合理(就算有时合理)的控制策略和配置方式,会造成重合闸失败、继电保护装置的保护区缩小、潮流改变使得继电保护误动作。另外注意孤岛问题。储能配置、功率预测及平滑等问题,目前估计很多都不愿意这么搞的。管理、监控、维护问题。效益权利纷争问题(这真的也算个技术活)。以上只是具有代表性的一部分问题,针对这些问题,当前更多采用建模、预测等手段初步验算。不过应用与现场还是困难重重,既然如此难以搞定,电网就对这样一种不可控电源进行了限制、隔离的处理方式,一方面要求电源端设备的性能指标,另一方面一旦电网故障,要求分布式电源必须马上退出运行(IEEE1547)。为了更好协调分布式发电和电网之间关系,微电网的概念得以推出。微网的定义尚未统一,这里给出一种:微网是指由微电源(分布式电源)、储能装置、负荷和监控、保护装置汇集而成的小型发配电系统,是一个能够实现自我控制、管理和保护的自治系统。微电网对外可以看做一个单一的可控单元,通过公共耦合点的静态开关接入电网,实际操作时微网的入网标准只针对微网和电网的公共连接点,而不考虑微网内各个(分布式)电源,从而实现分布式发电和电网更和谐的相处。目前,微网从整体控制策略上主要有主从控制、对等控制、基于多代理的分层控制等,而内部微电源的控制主要有恒功率控制(P/Q)、恒压恒频控制(V/F)和下垂控制(DROOP)等。

TAGS:
声明

1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;
2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;
3.作者投稿可能会经我们编辑修改或补充。

搜索
排行榜
标签列表